基于改进PSO优化RBF神经网络线损计算与分析
何立强 赵允 于景亮
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

何立强 赵允 于景亮,. 基于改进PSO优化RBF神经网络线损计算与分析[J]. 电力技术学报,2020.9. DOI:.
摘要:
为了准确计算配电网线路损耗,进行窃电位置的判断,提出改进粒子群算法优化RBF神经网络的计算和分析模型。以机器学习为切入点,通过数据驱动的方式,利用改进粒子群算法优化RBF神经网络重要参数,分别构建了相关线损计算和分析模型,基于IEEE13节点配电网络参数,实现理论线损计算和窃电位置判断。通过Matlab仿真验证上述模型的准确性和可靠性。
关键词: 粒子群算法人工神经网络算法线损计算窃电分析
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。