基于改进PID神经网络算法的AUV垂直面控制
黄茹楠 丁宁
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

黄茹楠 丁宁,. 基于改进PID神经网络算法的AUV垂直面控制[J]. 建模与系统仿真,2020.5. DOI:.
摘要:
针对一类小型低速自主水下航行器(AUV)的垂直面运动控制问题,设计了一种改进的PID神经网络控制器,实现对水下航行器在垂直面内深度和俯仰角的全局控制。利用REMUS水下航行器模型搭建了Simulink下AUV垂直面仿真控制系统,仿真结果表明,改进的控制方法克服了原方法中饱和区过大的问题,具有良好的动态性能同时能够适应不同的学习速率和网络初始权重,对水下航行器的工程实际应用具有一定参考价值。
关键词: LTO循环污染物排放滑行道口位置滑行时间AirTOp
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。