文章标题
作者姓名
关键词
单位名称
检索
AI智能检索
学术期刊
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
按期刊分类
医药卫生
(21)
工程技术
(38)
数学与物理
(12)
经济与管理
(12)
人文社科
(41)
化学与材料
(9)
信息通讯
(10)
地球与环境
(25)
生命科学
(2)
首页
>
文章
基于CNN和SVR相结合的电力负荷预测分析
DOI
:
,
PDF
下载:
78
浏览: 518
作者
:
马煜1
;
黄哲洙1
;
钟丽波1
;
李然1
;
杨宁2
;
作者单位
:
1.国网沈阳供电公司;2.国家电网有限公司东北分部
;
关键词
:
卷积神经网络
;
支持向量回归
;
灰度图
;
电力负荷预测
;
摘要:
针对电力负荷预测提出了卷积神经网络和支持向量回归相结合的方法。首先将数据预处理成灰度图,作为算法输入数据;然后通过卷积神经网络进行特征提取,将电力负荷的影响因素重新混合,提取更高维的新特征;最后将新特征输入支持向量回归模型进行预测。通过试验对比,该方法实际效果良好。
投稿
相关文章
大数据技术在金融风控中的应用研究
程序化护理干预模式在脑出血患者中的应用及对认知水平的影响研究
一种用于小孔径攻丝的工装设计
一种便携式自动控制气动短路接地装置研制
关于建筑电气安装工程施工质量控制研究
学术共建
清华大学出版社
北大中文系
国家工程技术数字图书馆
维普网
万方数据库
版权所有 © 2025 世纪中文出版社
京ICP备2024086036号-2