基于机器学习的小型核反应堆系统状态预测方法
DOI,PDF 下载: 38  浏览: 311 
作者曾聿赟1刘井泉1杨春振1孙凯超2
摘要:
为支持小型可移动高温熔盐堆(TFHR)自动控制系统的开发,提出了一种基于机器学习的反应堆状态预测模型,以根据仪控系统的监测数据评估反应堆当前状态并预测其未来发展。该模型由一个反应堆物理子模型和热工子模型构成,由TFHR一回路的RELAP模型生成训练数据,通过支持向量回归(SVR)训练得到,并采用粒子滤波(PF)方法估计其中的未知模型参数。通过TFHR反应性引入事故的测试算例表明,本文提出的预测模型在预测反应堆状态、估计模型参数(如反应性引入率)等方面具有良好的性能。

版权所有 © 2025 世纪中文出版社  京ICP备2024086036号-2