文章标题
作者姓名
关键词
单位名称
检索
AI智能检索
学术期刊
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
按期刊分类
医药卫生
(21)
工程技术
(38)
数学与物理
(12)
经济与管理
(12)
人文社科
(41)
化学与材料
(9)
信息通讯
(10)
地球与环境
(25)
生命科学
(2)
首页
>
文章
基于词向量的中文事件发现及表示
DOI
:
,
PDF
下载:
82
浏览: 533
作者
:
张斌
;
胡琳梅
;
侯磊
;
李涓子
;
;
;
;
;
作者单位
:
清华大学计算机科学与技术系知识工程研究室
;
关键词
:
词向量
;
事件发现
;
动态在线聚类
;
摘要:
已有的事件发现方法主要基于词频-逆文档频率文档表示,维度较高,语义稀疏,效率和准确率都较低,不适用于大规模在线新闻事件发现.因此,文中提出基于词向量的文档表示方法,降低文档表示维度,缓解语义稀疏问题,提高文档相似度计算效率和准确性.基于该文档表示方法,提出动态在线新闻聚类方法,用于在线新闻事件发现,同时提高事件发现的准确率和召回率.在标准数据集TDT4和真实数据集上的实验表明,相比当前通用的基线方法,文中方法在时间效率和事件质量上都有显著提高.
投稿
相关文章
应用免疫检查点抑制剂慢性阻塞性肺病治疗的探索
体育课与课余体育活动整合研究
品管圈在提高跌倒高危病人复评率的效果观察及应用
摄食训练食物温度的精准分级对脑卒中吞咽障碍患者的影响研究
论存在函数不能用二次迭代函数表示
学术共建
清华大学出版社
北大中文系
国家工程技术数字图书馆
维普网
万方数据库
版权所有 © 2025 世纪中文出版社
京ICP备2024086036号-2