检索
AI智能检索
学术期刊
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
按期刊分类
医药卫生
(21)
工程技术
(38)
数学与物理
(12)
经济与管理
(12)
人文社科
(41)
化学与材料
(9)
信息通讯
(10)
地球与环境
(25)
生命科学
(2)
首页
>
文章
面向不平衡数据流的自适应加权在线超限学习机算法
DOI
:
,
PDF
下载:
78
浏览: 389
作者
:
梅颖
;
卢诚波
;
作者单位
:
丽水学院工学院
;
关键词
:
不平衡学习
;
数据流
;
在线学习
;
加权超限学习机(W-ELM)
;
概念漂移
;
摘要:
一般的在线学习算法对不平衡数据流的分类识别会遇到较大困难,特别是当数据流发生概念漂移时,对其进行分类会变得更困难.文中提出面向不平衡数据流的自适应加权在线超限学习机算法,自动调整实时到达的训练样本的惩罚参数,达到在线学习不平衡数据流的目的.文中算法可以适用于不同偏斜程度的静态数据流的在线学习和发生概念漂移时数据流的在线学习.理论分析和在多个真实数据流上的实验表明文中算法的正确性和有效性.
投稿
相关文章
大数据技术在金融风控中的应用研究
程序化护理干预模式在脑出血患者中的应用及对认知水平的影响研究
一种用于小孔径攻丝的工装设计
一种便携式自动控制气动短路接地装置研制
关于建筑电气安装工程施工质量控制研究
学术共建
清华大学出版社
北大中文系
国家工程技术数字图书馆
维普网
万方数据库
版权所有 © 2025 世纪中文出版社
京ICP备2024086036号-2