检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
首页
文章
基于深度学习的改进贝叶斯网络入侵检测算法
DOI:
,
PDF
,
下载:
56
浏览: 469
作者:
孙惠丽1 陈维华2 刘东朝2
;
作者单位:
1.河北大学继续教育学院;2.河北软件职业技术学院
;
关键词:
朴素贝叶斯;属性冗余;深度学习;滑动窗口;相对欧氏距离
;
摘要:
针对传统的朴素贝叶斯网络入侵检测技术存在训练数据集中属性冗余的问题,以及没有考虑到网络环境的变化导致贝叶斯网络结构改变的问题,提出一种结合深度学习和滑动窗口改进贝叶斯网络入侵检测方法。利用深度学习提取特征属性,降低数据集维数;采用滑动窗口技术实时更新贝叶斯网络参数,并利用特征属性的互信息计算各属性之间的相对欧氏距离,根据相对欧氏距离的大小及时更新贝叶斯网络,以提高检测率。实验结果表明,改进后的贝叶斯网络能够提高运算效率和检测率。
投稿
相关文章
大数据技术在金融风控中的应用研究
程序化护理干预模式在脑出血患者中的应用及对认知水平的影响研究
一种用于小孔径攻丝的工装设计
一种便携式自动控制气动短路接地装置研制
关于建筑电气安装工程施工质量控制研究
学术共建
清华大学出版社
北大中文系
国家工程技术数字图书馆
维普网
万方数据库