检索
AI智能检索
学术期刊
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
按期刊分类
医药卫生
(21)
工程技术
(38)
数学与物理
(12)
经济与管理
(12)
人文社科
(41)
化学与材料
(9)
信息通讯
(10)
地球与环境
(25)
生命科学
(2)
首页
>
文章
基于改进主成分分析法的城市需水量预测
DOI
:
,
PDF
下载:
57
浏览: 340
作者
:
徐继红
;
作者单位
:
新疆塔里木河流域希尼尔水库管理局
;
关键词
:
城市需水量
;
预测
;
主成分分析
;
LSTM神经网络
;
摘要:
为提高城市需水量预测精度,提出了基于主成分分析和长短时记忆神经网络的城市需水量预测模型。本文利用该模型对新疆阿克苏市城市需水量进行验证。结果表明:与BP神经网络等模型相比,该模型具有良好的预测性能和泛化能力,能够满足城市需水量精确预测的需要,可以为干旱区城市水资源精准调控提供参考。
投稿
相关文章
大数据技术在金融风控中的应用研究
程序化护理干预模式在脑出血患者中的应用及对认知水平的影响研究
一种用于小孔径攻丝的工装设计
一种便携式自动控制气动短路接地装置研制
关于建筑电气安装工程施工质量控制研究
学术共建
清华大学出版社
北大中文系
国家工程技术数字图书馆
维普网
万方数据库
版权所有 © 2025 世纪中文出版社
京ICP备2024086036号-2