文章标题
作者姓名
关键词
单位名称
检索
AI智能检索
学术期刊
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
按期刊分类
医药卫生
(21)
工程技术
(38)
数学与物理
(12)
经济与管理
(12)
人文社科
(41)
化学与材料
(9)
信息通讯
(10)
地球与环境
(25)
生命科学
(2)
首页
>
文章
基于协同过滤Attention机制的情感分析模型
DOI
:
,
PDF
下载:
47
浏览: 496
作者
:
赵冬梅1,2
;
李雅2
;
陶建华2
;
顾明亮1
;
作者单位
:
1.江苏师范大学物理与电子工程学院;2.中国科学院自动化研究所模式识别国家重点实验室
;
关键词
:
情感分析
;
协同过滤
;
LSTM
;
注意力机制
;
SVD
;
摘要:
该文主要研究在评论性数据中用户个性及产品信息对数据情感类别的影响。在影响数据情感类型的众多因素中,该文认为评价的主体即用户以及被评价的对象等信息对评论数据的情感至关重要。该文提出一种基于协同过滤Attention机制的情感分析方法(LSTM-CFA),使用协同过滤(CF)算法计算出用户兴趣分布矩阵,再将矩阵利用SVD分解后加入层次LSTM模型,作为模型注意力机制提取文档特征、实现情感分类。实验表明LSTMCFA方法能够高效提取用户个性与产品属性信息,显著提升了情感分类的准确率。
投稿
相关文章
应用免疫检查点抑制剂慢性阻塞性肺病治疗的探索
体育课与课余体育活动整合研究
品管圈在提高跌倒高危病人复评率的效果观察及应用
摄食训练食物温度的精准分级对脑卒中吞咽障碍患者的影响研究
论存在函数不能用二次迭代函数表示
学术共建
清华大学出版社
北大中文系
国家工程技术数字图书馆
维普网
万方数据库
版权所有 © 2025 世纪中文出版社
京ICP备2024086036号-2