请选择 目标期刊

基于主成分分析和循环神经网络的入侵检测模型 下载:63 浏览:437

刘敬浩 孙晓伟 金杰 《中文研究》 2020年3期

摘要:
针对网络数据特征维度高、现有的入侵检测方法准确率低的问题,该文提出了一种基于主成分分析(PCA)和循环神经网络(RNN)的入侵检测方法PCA-RNN。该方法先对网络数据进行预处理,通过主成分分析法对数据进行特征降维和降噪,找出含有最大信息的主成分特征子集,然后对处理后的数据使用循环神经网络进行分类训练。实验使用基于Python的TensorFlow平台,并采用NSL-KDD作为实验数据集。实验结果表明,与常用的基于机器学习和深度学习方法的入侵检测技术相比较,该文提出的入侵检测方法可有效地提高检测的准确性。

基于卷积循环神经网络的关系抽取 下载:21 浏览:201

宋睿 陈鑫 洪宇 张民 《中文研究》 2019年5期

摘要:
关系抽取是信息抽取领域一项十分具有挑战性的任务,用于将非结构化文本转化为结构化数据。近年来,卷积神经网络和循环神经网络等深度学习模型,被广泛应用于关系抽取的任务中,且取得了不错的效果。卷积网络和循环网络在该任务上各有优势,且存在一定的差异性。其中,卷积网络擅长局部特征提取,循环网络能够捕获序列整体信息。针对该现象,该文综合卷积网络抽取局部特征的优势和循环网络在时序依赖中的建模能力,提出了卷积循环神经网络(convolutional recurrent neural network,CRNN)。该模型分为三层:首先针对关系实例抽取多粒度局部特征,然后通过聚合层融合不同粒度的特征,最后利用循环网络提取特征序列的整体信息。此外,该文还探究多种聚合策略对信息融合的增益,发现注意力机制对多粒度特征的融合能力最为突出。实验结果显示,CRNN优于主流的卷积神经网络和循环神经网络,在SemEval 2010Task 8数据集上取得了86.52%的F1值。

基于ATT-IndRNN-CNN的维吾尔语名词指代消解 下载:26 浏览:408

祁青山1 田生伟1 禹龙2 艾山·吾买尔2 《中文研究》 2019年2期

摘要:
该文提出一种基于注意力机制(attention mechanism,ATT)、独立循环神经网络(independently recurrent neural network,IndRNN)和卷积神经网络(convolutional neural network,CNN)结合的维吾尔语名词指代消解模型(ATT-IndRNN-CNN)。根据维吾尔语的语法和语义结构,提取17种规则和语义信息特征。利用注意力机制作为模型特征的选择组件计算特征与消解结果的关联度,结果分别输入IndRNN和CNN得到包含上下文信息的全局特征和局部特征,最后融合两类特征并使用softmax进行分类完成消解任务。实验结果表明,该方法优于传统模型,准确率为87.23%,召回率为88.80%,F值为88.04%,由此证明了该模型的有效性。

基于多篇章多答案的阅读理解系统 下载:43 浏览:400

刘家骅1,2 韦琬2 陈灏2 杜彦涛2 《中文研究》 2018年11期

摘要:
机器阅读理解任务一直是自然语言处理领域的重要问题。2018机器阅读理解技术竞赛提供了一个基于真实场景的大规模中文阅读理解数据集,对中文阅读理解系统提出了很大的挑战。为了应对这些挑战,我们在数据预处理、特征表示、模型选择、损失函数的设定和训练目标的选择等方面基于以往的工作做出了对应的设计和改进,构建出一个最先进的中文阅读理解系统。我们的系统在正式测试集ROUGE-L和BLEU-4上分别达到了63.38和59.23,在105支提交最终结果的队伍里面取得了第一名。

基于多模型的新闻标题分类 下载:55 浏览:430

董孝政 宋睿 洪宇 朱芬红 朱巧明 《中文研究》 2018年8期

摘要:
该文研究中文新闻标题的领域分类方法(domain-oriented headline classification,DHC)。现有研究将DHC限定为一种短文本分类问题,并将传统分类模型和基于卷积神经网络的分类模型应用于这一问题的求解。然而,这类方法忽视了新闻标题的内在特点,即为"标题是建立在凝练全文且弱相关的词语之上的一种强迫性的语义表述"。目前,融合了序列化记忆的循环神经网络在语义理解方面取得了重要成果。借助这一特点,该文将长短时记忆网络模型(long-short term memory,LSTM)及其变型——门控循环单元(gated recurrent unit,GRU)也应用于标题的语义理解与领域分类,实验验证其性能可达81%的F1值。此外,该文对目前前沿的神经网络分类模型进行综合分析,尝试寻找各类模型在DHC任务上共有的优势和劣势。通过对比"全类型多元分类"与"单类型二元分类",发现在领域性特征较弱和领域歧义性较强的样本上,现有方法难以取得更为理想的结果(F1值<81%)。借助上述分析,该文旨在推动DHC研究在标题语言特性上投入更为充分的关注。

基于RNN和CNN的蒙汉神经机器翻译研究 下载:62 浏览:430

包乌格德勒1,2 赵小兵2 《中文研究》 2018年2期

摘要:
该文探讨了基于RNN和CNN的蒙汉神经机器翻译模型,分别采用蒙古语的词模型、切分模型和子词模型作为翻译系统的输入信号,并与传统的基于短语的SMT进行了比较分析。实验结果表明,子词模型可以有效地提高RNN NMT和CNN NMT的翻译质量。同时实验结果也表明,基于RNN的蒙汉NMT模型的翻译性能已经超过传统的基于短语的蒙汉SMT模型。

基于门控循环神经网络词性标注的蒙汉机器翻译研究 下载:68 浏览:444

刘婉婉 苏依拉乌尼尔仁庆道尔吉 《中文研究》 2018年2期

摘要:
统计机器翻译可以通过统计方法预测出目标词,但没有充分理解原文语义关系,因而得到的译文质量不高。针对该问题,利用一种基于门控单元循环神经网络结构来对蒙汉神经机器翻译系统进行建模,引入注意力机制来获取双语词语的对齐信息,并在构建字典过程中对双语词语进行词性标注来强化语义,以此来缓解因欠训练导致的错译问题。实验结果表明,与RNN的基准系统和传统的统计机器翻译方法相比,该方法 BLEU值得到一定的提升。

融合BERT语境词向量的译文质量估计方法研究 下载:33 浏览:324

李培芸 李茂西 裘白莲 王明文 《当代中文学刊》 2020年6期

摘要:
蕴含语义、句法和上下文信息的语境词向量作为一种动态的预训练词向量,在自然语言处理的下游任务中有着广泛应用。然而,在机器译文质量估计中,没有相关研究工作涉及语境词向量。该文提出利用堆叠双向长短时记忆网络将BERT语境词向量引入神经译文质量估计中,并通过网络并联的方式与传统的译文质量向量相融合。在CWMT18译文质量估计评测任务数据集上的实验结果表明,融合中上层的BERT语境词向量均显著提高了译文质量估计与人工评价的相关性,并且当对BERT语境词向量的最后4层表示平均池化后引入译文质量估计中对系统性能的提高幅度最大。实验分析进一步揭示了融合语境词向量的方法能利用译文的流利度特征来提高翻译质量估计的效果。

基于RNN的中文二分结构句法分析 下载:26 浏览:356

谷波1 王瑞波2 李济洪2 李国臣3 《当代中文学刊》 2019年3期

摘要:
为了构建一个简单易扩展的中文句法分析器,我们依据朱德熙和陆俭明先生的中文二分结构的层次分析句法理论,手工构建了一个3万句的二分结构的中文句法树库,并使用哈夫曼编码方式来简化表示完全二叉树的层次结构。该文将中文句法分析转换为迭代二分的序列标注问题,并根据该任务的特点,提出了在词的间隔上进行标记的序列标注模型(RNN-Interval,RNN-INT),与常用的循环神经网络模型(RNN,LSTM)和条件随机场模型(CRF)进行对比实验,使用mx2交叉验证序贯t-检验来比较模型。实验结果表明,RNN-INT模型在窗口为1的词特征就可达到最好的性能,并好于其他窗口大小和其他序列标注模型(RNN,LSTM,CRF)。最后,在测试集上,在人工分词下,RNN-INT在短语级别的F1值(块F1)达到71.25%,在句子级别的准确率达到约43%。

基于神经网络的学习状态检测 下载:42 浏览:365

郑茜元 郑虹 侯秀萍 《软件工程研究》 2020年12期

摘要:
对在线学习者注意力状态检测的方法大多基于眼睛闭合频率、头部偏转等特征,此类方法能够应对大多数情况,但针对学习者正视屏幕且视线落点处于屏幕上时出现的发呆、分神状态无法作出检测。针对此问题,提出了一种基于RNN的眼动分析算法RNN-EMA(RNN-EyeMovementAnalysis),该算法通过对序列眼动向量分析,预测学生学习行为,完成当前学习状态检测。实验表明,RNN-EMA算法能够对学习状态作出有效检测,且对比同类方法效果有所提升。

基于多阶段数据生成的自循环文本智能识别 下载:43 浏览:384

马新强1 刘丽娜2 李雪维4 顾晔4 黄羿3 刘勇2 《人工智能研究》 2020年9期

摘要:
在复杂多样场景下,极少存在同时对英文和中文都具有较优识别效果的大数据标注方法.因此文中提出针对复杂多样文本识别场景的数据生成和多阶段自循环训练算法.按照定义的生成数据参数随机生成文本数据,免去数据标注过程.在卷积循环神经网络的基础上,进行多阶段自循环训练,在循环过程中通过控制数据生成策略不断提升样本的识别精度.实验表明,文中算法在多个公开英文数据集及中文特定的复杂文本场景下都具有良好的识别性能.

基于字符级截断式循环神经网络的人名国籍识别 下载:376 浏览:392

张钰莎1 张礼明2 蒋盛益2 《人工智能研究》 2019年8期

摘要:
人名是反映用户国籍的关键信息,不同国籍的人名在结构和组成成分方面存在差异性和关联性.目前,基于人名的国籍识别研究工作大部分将人名切分成多个独立的字符单元,忽略字符间微妙的搭配和序列关系.针对上述问题,文中提出基于字符级截断式循环神经网络的人名国籍识别模型,将人名通过滑动窗口的方式截断成多个子序列,利用长短期记忆单元模型学习不同子序列内部的字符组合关系,通过平均池化操作聚合所有子序列信息,获取最终的人名向量表示.最后根据该人名向量实现用户的国籍识别.截断式的子序列有利于模型更关注人名内部的细微差异.在Olympic运动员和Aminer学者数据集上的实验表明,文中模型性能较优.

基于HMM和RNN的无人机语音控制方案与仿真研究 下载:51 浏览:437

周楠 艾剑良 《建模与系统仿真》 2020年6期

摘要:
为简化无人机操作,避免误操作,设计了一套基于隐马尔可夫模型(Hidden Markov Model,HMM)和循环神经网络(Recurrent Neural Networks,RNN)的无人机语音控制方案。该方案采用HMM识别无人机语音指令;同时采用RNN对多套无人机操作指令串进行训练,并对当前时刻指令进行预测,通过计算二者的相关性判断是否执行。仿真结果表明,该方案对HMM识别错误指令的辨别率达到61.90%,使整体错误率降至1.43%,表明该方案具有较为优异的性能。

基于深度强化学习的交通信号灯控制 下载:70 浏览:494

陈树德 彭佳汉 高旭 赖晓晨 《计算机研究与应用》 2020年9期

摘要:
交通问题具有非线性,不确定性的特征,传统算法往往难以取得较好的效果。深度学习模型在处理非线性、时序性的数据上拥有良好的表现。由此,提出一种基于深度强化学习的信号灯控制系统。该系统包括了几个部分:1)使用实时的交通数据或仿真环境产生数据;2)通过LSTM循环神经网络预测未来的交通信息;3)使用DDPG深度强化学习模型进行决策。在多个数据集上的实验验证算法的优越性及泛化能力。

基于BiGRU和注意力机制的多标签文本分类模型 下载:76 浏览:484

饶竹一 张云翔 《计算机研究与应用》 2020年3期

摘要:
文本分类是自然语言处理的重要组成部分,在电网相关的网络文本情感识别中,针对其文本没有固定语法及书写格式,且情感信息分散于文本各个位置的问题,提出一种基于双向门控循环神经网络(BiGRU)和注意力机制的多标签文本分类模型。首先,使用预训练词向量提取网络文本的深层次信息特征;其次,根据注意力机制将分析出的深层次信息特征加以相应的权重;最后,使用BiGRU对文本特征信息进行分类。在Kaggle的Toxic Comment Classification数据集上进行的实验结果表明:对于情感识别的准确率高达98%。

一种基于循环神经网络的住户级短期负载预测方法 下载:166 浏览:1997

宋子豪 《神经科学研究》 2023年2期

摘要:
随着智能电表的发展,对区域级、建筑级的负载预测准确度逐步提高,但在住户级负载预测领域,因其突变性、波动性更强,该领域仍面临着巨大挑战。为了解决这些问题,提出多重检测长短期记忆模(Multi-detection-LSTM),即在传统聚类方法上引入深度学习领域的LSTM模型,使其面对不同的住户数据时能自适应其用电习惯,对单户人家用电量进行精准预测。与传统模型相比,Multi-detection-LSTM有效的消除了住户级负载预测面临的波动性问题,具有更高的准确度。

基于深度学习的图像识别与优化研究 下载:93 浏览:997

左龙 《国际科技论坛》 2024年9期

摘要:
探讨基于深度学习技术在图像识别与优化领域的最新进展。首先介绍了深度学习在图像处理中的重要性及其在提高识别准确度和效率方面的优势。随后讨论了当前主流的深度学习模型及其在图像识别任务中的应用,包括卷积神经网络(CNN)和循环神经网络(RNN)等。进一步分析了优化算法在模型训练和性能提升中的关键作用,如梯度下降和自适应学习率调整。最后,针对图像识别中的挑战和未来发展趋势进行了展望,强调了跨学科合作和大数据驱动的研究方向。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享