检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
首页
文章
非线性Hammerstein模型的生物优化辨识
DOI:
,
PDF
,
下载:
53
浏览: 451
作者:
李俊晖 石守东 林卫星 汪睿琪
;
作者单位:
宁波大学信息科学与工程学院
;
关键词:
Hammerstein模型;非线性系统;系统优化辨识;杂交粒子群算法;蚁群算法
;
摘要:
在现代工业生产领域中,非线性系统的辨识一直是研究人员研究的重点对象。针对输入非线性Hammerstein模型,本文提出了运用生物优化算法中的蚁群算法(ACO)、杂交粒子群算法(HPSO)对非线性系统进行辨识。讨论了ACO、HPSO的基本算法与参数初值的设置与选择方法。通过研究各算法的辨识效果、精度、以及鲁棒性,说明:杂交粒子群、蚁群算法都是参数设置少、编程易实现,辨识精度高,鲁棒性较好的一类算法,在解决实际问题时,有很高的利用价值。
投稿
相关文章
大数据技术在金融风控中的应用研究
程序化护理干预模式在脑出血患者中的应用及对认知水平的影响研究
一种用于小孔径攻丝的工装设计
一种便携式自动控制气动短路接地装置研制
关于建筑电气安装工程施工质量控制研究
学术共建
清华大学出版社
北大中文系
国家工程技术数字图书馆
维普网
万方数据库