文章标题
作者姓名
关键词
单位名称
检索
AI智能检索
学术期刊
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
按期刊分类
医药卫生
(21)
工程技术
(38)
数学与物理
(12)
经济与管理
(12)
人文社科
(41)
化学与材料
(9)
信息通讯
(10)
地球与环境
(25)
生命科学
(2)
首页
>
文章
基于强化学习的数据驱动最优镇定控制及仿真
DOI
:
,
PDF
下载:
75
浏览: 420
作者
:
陆超伦
;
李永强
;
冯远静
;
;
;
作者单位
:
浙江工业大学信息工程学院
;
关键词
:
Q-学习
;
数据驱动
;
最优控制
;
吸引域
;
摘要:
利用Q-学习算法,针对模型未知只有数据可用的非线性被控对象,解决最优镇定控制问题.由于状态空间和控制空间的连续性,Q-学习只能以近似的方式实现.因此,文中提出的近似Q-学习算法只能获得一个次优控制器.尽管求得的控制器只是次优,但是仿真研究表明,对于强非线性被控对象,相比线性二次型调节器和深度确定性梯度下降方法,文中方法的闭环吸引域更宽广,实际指标函数也更小.
投稿
相关文章
精神科护士夜班查房注意事项探讨
应用免疫检查点抑制剂慢性阻塞性肺病治疗的探索
体育课与课余体育活动整合研究
品管圈在提高跌倒高危病人复评率的效果观察及应用
摄食训练食物温度的精准分级对脑卒中吞咽障碍患者的影响研究
学术共建
清华大学出版社
北大中文系
国家工程技术数字图书馆
维普网
万方数据库
版权所有 © 2025 世纪中文出版社
京ICP备2024086036号-2